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fn El] equations of the theory of plasticity were proposed for an arbi- 
trary relationship between the invariants of the stress tensor 

F (s, t) = 0 (s = l/2 (a, + G,), t = 6% (3x - qJ2 + q4? 

In accordance with this work, we represent the relationship between s 
and t in the form of a relationship between the functions v and h, which 
are defined as follows: 

dt 1 ds = cos 221, 2dh=tan2$dInt (1) 

The canonical system of characteristic equations in the xy plane takes 
on the fort: 

The canonical system of characteristic equations in the uv plane 
takes on the form: 

In cl,21 it was shown that the systems of Equations (2) and (3) are 
integrable in closed form when y(h) = h; in the present work a solution 

of the systems (2) and (3)is given for the case y(h) = h/3. We examine 
the system (2). Introducing the new functions 

and substituting into the system (2), we obtain 
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Upon eliminating the function Y we arrive at the equation 

In the case of v(h) = h/3, one of the Laplace invariants [3] of Equa- 

tion (6) vanishes. Therefore, Equation (6) can be integrated in closed 

form: 

Here Fu(rj) and Fl(<) are arbitrary functions. We obtain the expression 

for the function Y(<, ‘1) from the first of the equations of the System 

(5). 

!Ve turn now to an investigation of the velocity field. We introduce 

the functions 

U = - u sin (cp - $) + v Cos (cp - $), v = 24 ~0s (cp - 9) + v sin (cp - 9) (8) 

Then the equations of the system (3) take on the form: 

Eliminating the function II, we obtain 

In the case of ~(1) = A/3 one of the Laplace invariants of Equation 

(10) is zero. Therefore the solution has the form 

We remark that other integrable cases of Equations (6) and (IO) can 

be obtained from the condition that the Laplace invariant of the equa- 

tions vanish. This condition is obtainable from (6) and (10) by means of 

the Laplace transformation [31. In all cases, the function yr” = 0 will 

be a solution of the corresponding nonlinear equations. However, in this 

process the expression of the general integral becomes quite compli- 

cated. 

We turn to the condition for the limiting state in the case v(h)=h/3. 
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From Equations (1) we obtain the parametric representation 

t = k (sin 2$)3, s=3k(II,--~/~sin4$)+m (k, m = const) (12) 

In plane strain, the condition of the limiting state is also repre- 

sented by an envelope of stress circles. 

Then the condition being proposed is 

written in the form 

a,=k(39-sin41C,+1/gsin8$)+m 

1 r 1 =l/s k (3 + c.os 89 -- 4 cos 4$) (13) 

In Fig. 1 is shown the envelope to 

the stress circle obtained by von 

Karman [51 from an experiment with 0 2000 
sandstone. This is seen to be extremely 

close to the curve (18) for k = 1900 

kg/cm’ and m = - 8850 kg/cm2. 
Fig. 1. 

An analysis of cases in which at least one of the variables < or q is 

constant in the region being examined can be carried out as indicated in 

[ll. Let < = <u = const. Then the family of characteristics consists of 

the straight lines 

y = 5 t@‘(q - 9,) + CD (n) = x taa l/8 (:O - 27j) -t o (11) 04) 

Here (9(q) is an arbitrary function. The second family is found by the 

integration of the equation 

Fig. 2. 

dy / dx = m (cp + $,) = tan l/s (2Eo - q) iW 

consistent with (14). For Q = ‘lo = const the 

investigation is analogous. When both quanti- 

ties are constant, each of the families of 

characteristics consists of parallel straight 

lines. As an example we examine the compression 

of a strip of height 2b which is loaded by a 

uniform pressure p distributed on oppositely 

lying segments of length o (Fig. 2). It is con- 

venient to take the origin of coordinates at 

the point B. In the triangle ABC there is a 

homogeneous state of stress. In the region ACD 

the family of characteristics q = const is a 

pencil of straigbt lines passing through the 

point A: 
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From (16) and (15) we obtain the differential equation for the charac- 
teristics of the second family 

d y 1 
& 

= al - 

[ ( 2 
uo-’ +a + E”ll (17) 

Hence, by integration, we obtain the Parametric rt?preseniXtiOn of 

these characteristics 

Y (Eo. q) = @ + 4 *‘hi (Eo - 211) 

For the characteristic CD, the constant C is determined from the con- 
dition that x = - a/2 at rl = $. 1x1 an analogous fashion we obtain the 
parametric representation for the characteristics in the region BCE. 
Omitting the intermediate calculations, we have as the expressions for 
the functions X(5, r-l) on the characteristics CD and CE 

X (go, q) = - 2 (Eo, 3 sin l/3 (250 - q) + fx ($0, q) + al m 93 (50 - 21) em ‘I8 G%o- rll ( W 

x (Et tlo) = 0 

Therefore we obtain the solution in the region CDEF 

X (E, q) = cosec’ l/8 (5 + q) sin2 I/S tE0 + 11) X (50. rl) WV 

It is further necessary to determine the resulting stress u 
x2 

along 

the vertical axis of symmetry and to obtain the sought relationship be- 

tween a, b and p from the vanishing condition. 
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